A simple method for estimating transient heat transfer in slab-on-ground floors
نویسندگان
چکیده
The problem of calculating transient heat transfer in concrete floor slabs is complicated due to ground coupling, which can require the numerical solution of two or three-dimensional transient conduction equations. This paper presents a simplified method for calculating transient slab-on-ground heat transfer that can be incorporated within hourly simulation programs. The method assumes that there are two primary one-dimensional paths for heat transfer from a ground-coupled floor slab: (1) one-dimensional heat transfer from the perimeter of the slab to the ambient and (2) one-dimensional heat transfer between the slab interior surface and a portion of the soil beneath the slab. The perimeter heat transfer is assumed to occur at quasi-steady state and is characterized in terms of a perimeter heat loss factor (Fp). Transient heat transfer within the slab and ground are modeled using a simple thermal circuit employing three nodes with an adiabatic boundary condition at a specified depth within the soil underneath the slab. Although some simulation models consider this type of two-path model, there appears to be no validation of this approach and there is no guidance for specifying perimeter heat loss factors and underfloor soil depths and node locations for the thermal circuit. In the current paper, results from detailed two-dimensional finite-element models for typical floor constructions and soil properties were used to identify (1) locations for nodes within the slab and soil, (2) correlations for soil depth as a function of soil properties associated with the underfloor adiabatic boundary condition, and (3) correlations for perimeter heat loss factor as a function of soil properties and edge insulation levels for different constructions. Transient heat transfer results from the simple model compared well with results from the finite-element program for different floor constructions, edge insulation, soil properties, locations, and times of year. r 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
Transient Three-Dimensional Thermal Analysis of a Slab with internal heat generation and heated by a Point Moving Heat Source
In this work, analysis of transient three-dimensional heat transfer in a slab with internal heat generation and heated by a point moving heat source along its axis is carried out using integral transforms methods. The heat input into slab or workpiece by the moving heat source is considered in the model. From the results, it was established that the temperature of the material during the heat t...
متن کاملNumerical Analysis of Heat Transfer of Slab in the pusher-Type Preheat Furnaces
The objective of this study is to find the temperature distribution of a slab as it moves through the pusher-type preheat furnaces. First, the imaginary planes method (IPM) as a new and applicable method for calculation of radiation heat transfer in industrial furnaces is studied, and the two-dimensional form of this method is used to calculate heat flux and temperature distribution in the furn...
متن کاملNumerical Analysis of Heat Transfer of Slab in the pusher-Type Preheat Furnaces
The objective of this study is to find the temperature distribution of a slab as it moves through the pusher-type preheat furnaces. First, the imaginary planes method (IPM) as a new and applicable method for calculation of radiation heat transfer in industrial furnaces is studied, and the two-dimensional form of this method is used to calculate heat flux and temperature distribution in the furn...
متن کاملInvestigation on thermal behavior of common types of roofs in buildings using computational fluid dynamics method
In this study, the influence of type and structure of different roofing systems were investigated using computational fluid dynamic method. The considered roofing systems include beam and block types (clay brick, light weight concrete block, polystyrene) and Uboot slab which were designed for 6m and 8m span. To simulate the fluid flow and heat transfer, the computational fluid dynamic method wa...
متن کاملMathematical Modeling of Heat Transfer for Steel Continuous Casting Process
Heat transfer mechanisms and the solidification process are simulated for a continuous casting machine and the geometric shape of the liquid pool is predicted considering different conditions. A heat transfer and solidification model is described for the continuous casting of steel slabs. The model has been established on the basis of the technical conditions of the slab caster in the con...
متن کامل